GASEOUS STATE

PART- III

Brotati Chakraborty Department of Chemistry
Bejoy Narayan Mahavidyalaya, Itachuna, Hooghly

van der Waals equation

- Accounts for:
- Non-zero volumes of gas particles
- Attractive forces between gas particles (attractive effect)

Van der Waals isotherms

- Correction for volume

$$
V_{i}=V-n b
$$

$n=$ no. of moles
$b=$ effective volume occupied by molecules in 1 mole of a gas (excluded volume/ co-volume)
$V_{i}=$ free volume
$V=$ total volume
Numerical value of ' b ' is four times the actual volume occupied by the gas molecules.

Kinetic Theory assumes that all of this space is available for the molecules to move around in .

but, in fact, only this amount is available, because the rest is taken up by the molecules themselves.

- If we consider only bimolecular collisions, then the volume occupied by the sphere of radius $2 r$ represents the excluded volume per pair of molecules which is given by, $\frac{4}{3} \pi(2 r)^{3}=8\left(\frac{4}{3} \pi r^{3}\right)$
- Excluded volume per molecules $=4\left(\frac{4}{3} \pi r^{3}\right)$
- ' b ' represent excluded volume per mole of the gas, $\therefore b=N_{A} \cdot 4\left(\frac{4}{3} \pi r^{3}\right)$

Consider a molecule in the bulk of the vessel, which is surrounded by other molecules symmetrically. As a result, it experiences no net force of attraction.

A molecule which is about to strike a side of the vessel is considered. There are molecules only on one side of the vessel. Hence, this molecule experiences a net force of attraction towards the centre of the vessel. Thus, there is a decrease in its velocity and hence in its momentum which results in decrease in pressure of the gas compared to ideal gas.

$$
P_{i}=P+\text { correction term }
$$

Correction term depends upon:
[1] No. of molecules per unit volume of the vessel
Correction term $\propto \frac{n}{V}$
[2] No. of molecules striking the side of the vessel in unit time (1 sec) Correction term $\propto \frac{n}{V}$
Thus, correction term $=a \cdot \frac{n^{2}}{V^{2}}$

Thus,

$$
\begin{aligned}
& P_{i} V_{i}=n R T \\
& \left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
\end{aligned}
$$

van der Waals equation

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-n b)=n R T
$$

' a ' and ' b ' are called van der Waal's constants.

Units of ' a ' and ' b '

$$
\begin{array}{l|l}
P+\frac{a n^{2}}{V^{2}} \Rightarrow \text { pressure } & V-n b \Rightarrow \text { unit of volume } \\
\frac{a n^{2}}{V^{2}} \Rightarrow P a
\end{array} \quad \begin{aligned}
& b \Rightarrow d m^{3} \mathrm{~mol}^{-1} \\
& a \Rightarrow P a d m^{6} \mathrm{~mol}^{-2}
\end{aligned} \quad \begin{aligned}
& \text { • " } a \text { " and " } b \text { " are determined by experiment } \\
& \begin{array}{l}
\text { • } a \text { " and " } b \text { " are different for each gas } \\
\text { • " } a \text { " depends on both size and polarity }
\end{array}
\end{aligned}
$$

Applicability of van der Waals equation

- At low pressure and high temperature

When pressure is low, volume is considerably high and ' b ' can thus be ignored. Thus, for 1 mole of a gas,

$$
\begin{aligned}
& \left(P+\frac{a}{V_{m}^{2}}\right) V_{m}=R T \\
& \Rightarrow P V_{m}+\frac{a}{V_{m}}=R T \\
& \Rightarrow Z=1-\frac{a}{V_{m} R T}
\end{aligned}
$$

Thus, in low pressure region, Z is less than 1 . As $V \propto \frac{1}{P}$, thus on increasing P, Z will further decrease with increase in P.

- At high pressure

When P is high, V_{m} is low and value of ' b ' cannot be ignored. However, $\frac{a}{V_{m}^{2}}$ can
be ignored. be ignored.

$$
\begin{aligned}
& P\left(V_{m}-b\right)=R T \\
& \Rightarrow P V_{m}-P b=R T \\
& \Rightarrow Z=1+\frac{P b}{R T}
\end{aligned}
$$

Thus, Z is greater than 1 and it increases linearly with pressure.

- At high temperature and low pressure

At high temperature, the value of V_{m} will be considerably high. The value of $\frac{a}{V_{m}^{2}}$ will be very small. The value of ' b ' may also be neglected in comparison to V_{m}.

$$
P V_{m}=R T
$$

Thus, van der Waal's gas equation reduces to ideal gas equation.

- Hydrogen and helium

For hydrogen and helium, the value of ' a ' is extremely low as these gases are difficult to liquify.

Thus, $\quad P\left(V_{m}-b\right)=R T$

So, Z is greater than 1 and it increases linearly with pressure.

- Drawback of van der Waals equation

Generality of van der Waals equation is lost as it contains two constants whose values depend upon the nature of gas.

Determination of critical constants for van der Waals gas

- For 1 mole of van der Waal gas,

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \Rightarrow P=\frac{R T}{V-b}-\frac{a}{V^{2}}
\end{aligned}
$$

- At critical point, the maxima and the minima coalesce, and it is thus, a point of inflexion.
- At critical point, $\left(\frac{\partial P}{\partial V}\right)_{T}=0$ and $\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}=0$

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial V}\right)_{T}=-\frac{R T}{(V-b)^{2}}+\frac{2 a}{V^{3}} \\
& \left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}=\frac{2 R T}{(V-b)^{3}}-\frac{6 a}{V^{4}}
\end{aligned}
$$

- At critical point, $-\frac{R T_{C}}{\left(V_{c}-b\right)^{2}}+\frac{2 a}{V_{c}^{3}}=0$

$$
\begin{equation*}
\Rightarrow \frac{R T_{C}}{\left(V_{c}-b\right)^{2}}=\frac{2 a}{V_{c}^{3}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \text { and } \frac{2 R T_{c}}{\left(V_{c}-b\right)^{3}}-\frac{6 a}{V_{c}^{4}}=0 \tag{2}\\
& \Rightarrow \frac{R T_{c}}{\left(V_{c}-b\right)^{3}}=\frac{3 a}{V_{c}^{4}}
\end{align*}
$$

(1) divided by (2) $\quad V_{c}-b=\frac{2}{3} V_{c}$

$$
\Rightarrow \frac{V_{c}}{3}=b
$$

$$
\begin{equation*}
\Rightarrow V_{c}=3 b \tag{3}
\end{equation*}
$$

- Putting (3) in (1), $\frac{R T_{c}}{4 b^{2}}=\frac{2 a}{27 b}$

$$
\begin{equation*}
\Rightarrow T_{c}=\frac{8 a}{27 R b} \tag{4}
\end{equation*}
$$

- Now, $P_{c}=\frac{R T_{c}}{V_{c}-b}-\frac{a}{V_{c}^{2}}$

$$
\begin{aligned}
& =\frac{8 a R}{27 R b \cdot 2 b}-\frac{a}{9 b^{2}} \\
& =\frac{4 a}{27 b^{2}}-\frac{a}{9 b^{2}} \\
& =\frac{4 a-3 a}{27 b^{2}}
\end{aligned}
$$

$$
\begin{equation*}
P_{c}=\frac{a}{27 b^{2}} \tag{5}
\end{equation*}
$$

- Critical co-efficient i.e. $\frac{R T_{c}}{P_{c} V_{c}}=R \cdot \frac{8 a}{27 R b} \cdot \frac{27 b^{2}}{a} \cdot \frac{1}{3 b}=\frac{8}{3}=2.66$

Boyle's temperature

- There exists for every gas a characteristic temperature where the curve ($P V$ vs P) runs almost parallel to P axis from zero pressure to moderate values of pressure. It means at this temperature, the value of $P V$ remains constant for an appreciable range of pressure, i.e. Boyle's law is obeyed. This temperature is known as Boyle temperature $\left(T_{B}\right)$.
- Mathematically, at T_{B},

$$
\frac{\partial(P V)}{\partial P}=0, P \rightarrow 0
$$

$$
\begin{aligned}
& \left(P+\frac{a}{V^{2}}\right)(V-b)=R T \\
& \Rightarrow P=\frac{R T}{V-b}-\frac{a}{V^{2}} \\
& \Rightarrow P V=\frac{R T V}{V-b}-\frac{a}{V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { At } T_{B},\left[\frac{\partial(P V)}{\partial P}\right]_{T}=0 \\
& \Rightarrow \frac{-R T_{B} b}{(V-b)^{2}}+\frac{a}{V^{2}}=0 \\
& \Rightarrow T_{B}=\frac{a}{R b}\left(\frac{V-b}{V}\right)^{2}
\end{aligned}
$$

When $P \rightarrow 0, V$ is infinitely large,

$$
\left[\frac{\partial(P V)}{\partial P}\right]_{T}=\frac{R T}{V-b}-\frac{R T V}{(V-b)^{2}}+\frac{a}{V^{2}}
$$ i.e. $V-b \approx V$

$$
=\frac{R T V-R T b-R T V}{(V-b)^{2}}+\frac{a}{V^{2}}
$$

$$
\therefore T_{B}=\frac{a}{R b}
$$

$$
=-\frac{R T b}{(V-b)^{2}}+\frac{a}{V^{2}}
$$

Thus, $\frac{T_{B}}{T_{c}}=\frac{a}{R b} \cdot \frac{27 R b}{8 a}=\frac{27}{8}$

Reduced equation of state

$\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$
$\left(\pi P_{c}+\frac{a}{\left(\varphi V_{c}\right)^{2}}\right)\left(\varphi V_{c}-b\right)=R \theta T_{c}$
$\left(\frac{a \pi}{27 b^{2}}+\frac{a}{9 b^{2} \varphi^{2}}\right)(3 b \varphi-b)=\frac{8 a R \theta}{27 R b}$
$\frac{a b}{27 b^{2}}\left(\pi+\frac{3}{\varphi^{2}}\right)(3 \varphi-1)=\frac{8 a R \theta}{27 R b}$
$\left(\pi+\frac{3}{\varphi^{2}}\right)(3 \varphi-1)=8 \theta$
This equation is independent of a, b and R and hence applicable to all gases.

Law of corresponding states

If two substances have same reduced pressure and are also at the same reduced temperature, then their reduced volumes should be the same. The substances under such conditions are said to be in the corresponding states and the principle stated above is called the law of corresponding states.

